The weighted stable matching problem
نویسندگان
چکیده
We study the stable matching problem in non-bipartite graphs with incomplete but strict preference lists, where the edges have weights and the goal is to compute a stable matching of minimum or maximum weight. This problem is known to be NP-hard in general. Our contribution is two fold: a polyhedral characterization and an approximation algorithm. Previously Chen et al. have shown that the stable matching polytope is integral if and only if the subgraph obtained after running phase one of Irving’s algorithm is bipartite. We improve upon this result by showing that there are instances where this subgraph might not be bipartite but one can further eliminate some edges and arrive at a bipartite subgraph. Our elimination procedure ensures that the set of stable matchings remains the same, and thus the stable matching polytope of the final subgraph contains the incidence vectors of all stable matchings of our original graph. This allows us to characterize a larger class of instances for which the weighted stable matching problem is polynomial-time solvable. We also show that our edge elimination procedure is best possible, meaning that if the subgraph we arrive at is not bipartite, then there is no bipartite subgraph that has the same set of stable matchings as the original graph. We complement these results with a 2-approximation algorithm for the minimum weight stable matching problem for instances where each agent has at most two possible partners in any stable matching. This is the first approximation result for any class of instances with general weights.
منابع مشابه
On the inverse maximum perfect matching problem under the bottleneck-type Hamming distance
Given an undirected network G(V,A,c) and a perfect matching M of G, the inverse maximum perfect matching problem consists of modifying minimally the elements of c so that M becomes a maximum perfect matching with respect to the modified vector. In this article, we consider the inverse problem when the modifications are measured by the weighted bottleneck-type Hamming distance. We propose an alg...
متن کاملThe matching interdiction problem in dendrimers
The purpose of the matching interdiction problem in a weighted graph is to find two vertices such that the weight of the maximum matching in the graph without these vertices is minimized. An approximate solution for this problem has been presented. In this paper, we consider dendrimers as graphs such that the weights of edges are the bond lengths. We obtain the maximum matching in some types of...
متن کاملGeneralized Stable Matching in Bipartite Networks
In this paper we study the generalized version of weighted matching in bipartite networks. Consider a weighted matching in a bipartite network in which the nodes derive value from the split of the matching edge assigned to them if they are matched. The value a node derives from the split depends both on the split as well as the partner the node is matched to. We assume that the value of a split...
متن کاملOptimizing Disparity Candidates Space in Dense Stereo Matching
In this paper, a new approach for optimizing disparity candidates space is proposed for the solution of dense stereo matching problem. The main objectives of this approachare the reduction of average number of disparity candidates per pixel with low computational cost and high assurance of retaining the correct answer. These can be realized due to the effective use of multiple radial windows, i...
متن کاملStabilizing Weighted Graphs
An edge-weighted graph G = (V,E) is called stable if the value of a maximum-weight matching equals the value of a maximum-weight fractional matching. Stable graphs play an important role in some interesting game theory problems, such as network bargaining games and cooperative matching games, because they characterize instances which admit stable outcomes. Motivated by this, in the last few yea...
متن کاملStability in Matching Problems with Weighted Preferences
The stable marriage problem is a well-known problem of matching men to women so that no man and woman, who are not married to each other, both prefer each other. Such a problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools or more generally to any two-sided market. In the classical stable marriage problem, both...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.09083 شماره
صفحات -
تاریخ انتشار 2016